X МІЖНАРОДНА НАУКОВО-ПРАКТИЧНА ІНТЕРНЕТ-КОНФЕРЕНЦІЯ

ПРОБЛЕМИ ТА ПЕРСПЕКТИВИ РОЗВИТКУ СУЧАСНОЇ НАУКИ В КРАЇНАХ ЄВРОПИ ТА АЗІЇ

30 листопада 2018 р.

Переяслав-Хмельницький
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ
«Переяслав-Хмельницкий государственный педагогический университет
имени Григория Сковороды»
молодежная общественная организация
«НЕЗАВИСИМАЯ АССОЦИАЦИЯ МОЛОДЕЖИ»
студенческое научное общество исторического факультета
«КОМИТЕТ ИССЛЕДОВАНИЯ ИСТОРИИ И СОВРЕМЕННОСТИ»

МАТЕРИАЛЫ

X Международной научно-практической интернет-конференции
«Проблемы и перспективы развития современной науки
в странах Европы и Азии»

30 ноября 2018 г.

СБОРНИК НАУЧНЫХ РАБОТ

Переяслав-Хмельницкий – 2018
ИДЕНТИФИКАЦИЮ КУЛЬТУР, ВЫДЕЛЕННЫХ ИЗ МОЛОКА МАСТИТНЫХ КОРОВ

Развитие животноводства в значительной мере сдерживается распространением различных болезней сельскохозяйственных животных, и в том числе мазитов. Принимаемой этой болезней экономический ущерб слагается из прямых и косвенных убытков. Основными из них являются: снижение молочной продуктивности, увеличение заболеваемости телят, ухудшение качества молока и молочных продуктов, вызвывающие массовые интоксикации и токсикингекию у людей [1, 2].

В настоящее время в ветеринарной практике для лечения мазитов широко применяются антибиотики. Однако, в связи с появлением резистентных к ним рас микробов, печеный эффект недолго снижается, особенно малоэффективными оказались они против мазитов кожной этиологии.

Эпизоотия мазитов и роль инфекционного агента остается еще недостаточно изученной [3, 4].

Учитывая изложенное, мы в своей работе задались целью изучить этиологическую структуру мазитов у коров.

Результаты исследования. Исследования проводились в хозяйствах ряда областей Казахстана и в лаборатории противооболезней биотехнологии Казахского национального аграрного университета. Всего исследовано 2330 проб молока от 586 коров.

В хозяйствах, в которых проводились исследования, мы изучали состояние здоровья животных, в том числе и выявляли, путем клинического обследования. Молочную желеzu коров обследовали согласно общепринятой схеме: осмотр, пальпация всех четвертей вымени, обращая внимание на величину, конституцию и симметричность, болезненность, местную температуру.

При взятии молока осматривали животных по принятой в клинической практике схеме. Анамнез-исследование животных проводилось из-за учета, документов библиотек, а также опроса обслуживающего персонала и специалистов животноводов.

При пробном сдавливании первых порций молока (секрета) из каждой четверти обращали внимание на однородность жидкости, наличие или отсутствие хлопьев, или каких-либо других примесей. Наличие хлопьев или изменение консистенции молока (секрета) указывало на воспаление молочной железы.

Субклиническую форму мазита коров определяли путем исследования секрета молочной железы при помощи быстрых мазитных тестов (с даминаром, мазитином, пробой отстаивания), а также других известных быстрых мазитных тестов и бактериологического исследования взятых из вымени проб на наличие основных возбудителей мазита.

При обследовании 586 животных в 5,35% случаев диагностирована клиническая и в 23,5% - субклиническая форма мазитов.

Приведенные данные показывают, что при выявлении скрытых форм мазитов проба с даминаром в основном совпадает с пробой отстаивания. Проба с мазитином совпадала с пробой отстаивания в 68,3% случаев, в то же время в 59 пробах она дала положительный результат с молоком из здоровых долей.

Проба с реактивом даминары, как известно, прямой и достаточно простой метод для определения мазитов, показала высокую диагностическую ценность. Поэтому при массовой проверке коров, на наш взгляд, наиболее целесообразно применять пробу с реактивом даминары и продолжать отстаивание, как наиболее объективные методы диагностики субклинических форм мазитов.

Бактериологическому исследованию подвергнуто 1000 проб молока от 250 коров, в том числе из долей вымени клинически больных мазитами – 150, субклиническим мазитам – 298 и здоровых – 552.

Исследования проводились согласно «Методическим указаниям по бактериологическим исследованиям молока и секрета вымени коров».

Из каждой пробы делался посев молока на МПЛ в чашках Петри, а также на солевой, кровяной агар и на среду Эндо. Для посева брали 0,1 см пробы и распределяли ее по поверхности стерильным шпателем, далее инкубировали при 37 °С в течение 24 часов. Проводили учет результатов.

Первичный отбор культур проводился на основании особенностей роста на средах и микроскопии препаратов из отдельных колоний.

У выделенных культур изучали морфологические, культуральные, биохимические свойства по общепринятым схемам. Идентификации выделенных культур проводили по определителя Берджа [5]. При бактериологическом исследовании проб молока от 250 коров, было выделено 1069 культур, из них от больных клиническим мазитами - 155 (13,5%), субклиническим – 590 (55,2%) и от здоровых – 294 (27,5%).

В наибольшем количестве стафилококки (351 штаммов) и стрептококки (129) выделяются с молоком коров, больных субклиническим мазитом.

Нами проверены были, что основные возбудители мазитов у коров являются стафилококки (55,2%) и стрептококки (22,4%), в меньшей степени кишечная полоочка (10,1 %), диплококки (2,3%), клебсиеллы (4,7%), микоплазмы (5,1%).
Целью дальнейших наших исследований явилось определение патогенности культур, выделенных от коров для отбора производственных штаммов возбудителей мастика крупного рогатого скота, которые будут использованы для изготовления инновационных биопрепаратов против мастика животных.

Вирулентность изолированных культур изучали на белых мышах (14 - 16 г). Для определения вирулентности культуры выращивали на среде, специфичной для каждого вида выделенной культуры, при температуре 37 - 38 °С в течение 18 - 20 часов и вводили подопытным животным внутрибрюшинно в различных дозах. Концентрацию микробных клеток определяли по оптическому стандарту мутности ГИСК им. Тарасевича. Наблюдение за подопытными животными вели в течение 10 - 15 суток. Вирулентность выделенных культур определяли по величине 50 % летальной дозы (LD₅₀) для белых мышей.

Предварительно нами патогенность выделенных культур проверяли на белых мышах, которым вводились внутрибрюшинно в дозах 10⁴, 10⁵, 10⁶ и 10³ колониобразующих единиц. Результаты опыта свидетельствовали, что подопытные животные, в большинстве случаев, погибли при заражении дозой 10⁶ КОЕ и выше.

В результате, на основе изучения морфологических, биохимических и антигенных свойств и степени патогенности выделенных культур были отобраны штаммы сальмонелл, выделенных от маститных коров: Staph. aureus, Str. agalactiae, E. coli, Str. pneumoniae, K. pneumoniae и M. pneumoniae. Всего - 18 культур (по 3 штамма от каждого вида возбудителя мастика коров). Биологические свойства вышеуказанных культур изучались по морфологическим, культуральным, биохимическим, антигенным и вирулентным свойствам.

Вирулентность штаммов Staph. aureus, Str. agalactiae, E. coli, Str. pneumoniae, K. pneumoniae, M. pneumoniae, выделенных от коров больных мастицом, была изучена в опытах на белых мышах. Белые мыши заражались внутрибрюшинно в различных дозах колониобразующих единиц (КОЕ). Результаты оценивались по выживаемости подопытных животных.

Результаты опыта показали, что исследуемые культуры обладают достаточно высокой вирулентностью, особенно штаммы: Staph. aureus 39, Str. agalactiae 64, E. coli 66, Str. pneumonia 78, K. pneumoniae 81, M. pneumoniae 88, вызывающие 100% гибель подопытных животных при дозе 10⁶ КОЕ и выше.

Во всех опытах проводилось бактериологическое исследование патматериала от павших животных. Постоянно выделялись заражающие культуры.

Результаты проведенных исследований свидетельствуют об этиологической роли изученных сальмонелл в заболевании телят, ягнят, пороссят, кур и цыплят.

Нами полученным показано, что исследуемые штаммы сохраняли типичные морфологические, токсикологические, культуральные, биохимические, антигенные и патогенные свойства, характерные для соответствующих видов бактерий. Изучены штаммы Staph. aureus 39, Str. agalactiae 64, E. coli 66, Str. pneumoniae 78, K. pneumoniae 81, M. pneumoniae 88 были отобраны, в качестве производственных штаммов, с целью применения их в разработке инновационных биопрепаратов против маститов сельскохозяйственных животных.

Литература:

Кадыр Биляшев, Жумагул Сламбековна, Светлана Емсовна, Кайрат Жуманов, Сорий Кошкимбаев (Алматы, Казахстан)

Выживаемость возбудителя лимфангосита верблюдов в объектах внешней среды

Как известно, заразно больные животные, выделяя возбудителя во внешнюю среду, инфицируют таковых. Поэтому важную роль в разработке ветеринарно-санитарных мероприятий по борьбе с инфекционными заболеваниями животных играет установление сроков сохранения патогенных микроорганизмов в различных объектах внешней среды.

Исследование жизнеспособности возбудителя лимфангосита верблюдов в объектах внешней среды имеет важное научное и практическое значение [1, 2].

Выживаемость возбудителя лимфангосита верблюдов в черносенной, глинистой, песчаной почвах и в навозе изучали в различные периоды года: осень, зимний, весенний и летний. При проведении опытов учитывались meteorологические условия: среднемесячная температура почвы, относительная